Integral - das sollten Sie wissen
- Die mathematische Bedeutung des Integrals erschließt sich Ihnen auf zweierlei Weise:
- Einerseits ist das Integral die rechnerische Antwort auf die Frage, wie die Funktion F(x) lautet, deren Ableitung f(x) Sie schon kennen. Fortgeschrittene kennen dieses als Frage nach der Stammfunktion.
- Oder das Integral erschließt sich historisch, nämlich als Frage nach der Größe einer Fläche, die durch eine (mehr oder weniger) gebogene bzw. krumme Funktion f(x) begrenzt wird.
- Aus dieser historischen Problemstellung resultiert auch das bekannte Integralzeichen ∫, das eine stilisierte Summe sein soll. Denn die Fläche unter einer Funktion f(x) kann man sich gut als Summe über viele sehr kleine Rechtecke vorstellen. Dabei ist die Länge des Rechtecks gerade der Funktionswert f(x) und die Breite sehr sehr klein, eben ein dx.
- Die Schreibweise eines Integrals als ∫ f(x) dx ist also eine Folge dieser gebildeten kleinen Rechteckflächen und bedeutet nichts weiter als "Berechnen Sie die Fläche unter der Funktion f(x) in den angegebenen Grenzen".
Integral dx - Bedeutung und Lösung
Allerdings kann ein Integral in der Form ∫ dx schon verwirren. Wo ist hier nämlich die Funktion f(x), unter der die Fläche berechnet werden soll bzw. was bedeutet diese wirklich seltsame Kurzform?
- Lassen Sie sich nicht beirren. Mathematiker neigen manchmal zu einer etwas (zugegebenermaßen) verwirrenden Abkürzerei. So wie niemand "1a", geschweige denn "1 * a" , sondern nur "a" schreibt, kann man lässigerweise auch unter dem Integral die "1" weglassen. Schön ist diese Schreibweise allerdings nicht.
- Sie können also getrost ∫ dx = ∫ 1 dx schreiben. Bei der gesuchten Funktion handelt es sich um f(x) = 1, eine Konstante, parallel zu x-Achse durch den Wert y = 1.
- Das gesuchte Integral können Sie mit dieser Vorgabe leicht lösen. Sie erhalten ∫ 1 dx = x + C. C ist die sogenannte Integrationskonstante.
- Wenn Sie den Flächeninhalt zwischen den Grenzen a und b suchen, erhalten Sie F = b - a (und hierbei handelt es sich tatsächlich um ein Rechteck mit der Breite b-a und der Länge 1 unter der Funktion f(x) = 1.
Weiterlesen:
Wie hilfreich finden Sie diesen Artikel?