Was Sie benötigen
- Grundkenntnisse Makroökonomie
- IS-LM-Modell
- Bleistift
- Lineal
- Farbstifte
Herleitung der IS-Kurve
Die IS-Kurve ist der geometrische Ort aller Kombinationen von Zins und Realeinkommen, die einen Ausgleich auf dem Kapitalmarkt (Investitionen = Ersparnis) und damit auch auf dem Gütermarkt (Angebot = Nachfrage) bewirken.
- Herleiten können Sie die IS-Kurve, wenn Sie sich zwei Diagramme untereinander zeichnen. Im ersten Diagramm (Beschriftung x-Achse: Produktion Y, Beschriftung y-Achse: gesamtwirtschaftliche Nachfrage Z, Produktion Y) zeichnen Sie die gesamtwirtschaftliche Nachfrage ein. Diese setzt sich aus dem privaten Konsum C, der Investitionsnachfrage I(i) und dem staatlichen Konsum G.
- Die Kurve ist steigend, denn bei einer höheren Produktion wird auch mehr nachgefragt. Die Investitionen sind abhängig vom Zinssatz i. Liegt ein niedrigerer Zinssatz vor, so steigen die Investitionen. Dies hängt damit zusammen, dass Fremdkapital für Unternehmen "billiger" wird. Projekte, die zuvor mittels der Kapitalwertmethode einen negativen Kapitalwert erwarten ließen, haben durch den niedrigeren Zins nun möglicherweise einen positiven Kapitalwert und werden realisiert.
- Im unteren Diagramm beschriften Sie die x-Achse mit der Produktion Y, die y-Achse mit dem Zinssatz i.
- Nun nehmen Sie im oberen Diagramm eine Senkung des Zinssatzes an. Was passiert? Da nur die Investitionen vom Zinssatz abhängig sind, steigen diese auf ein höheres Niveau. Der Staatskonsum und der private Konsum bleiben gleich. Insgesamt verschiebt sich die Nachfragekurve parallel nach oben.
- Tragen Sie nun die beiden Schnittpunkte der Nachfragekurven mit der Winkelhalbierenden ins zweite Diagramm nach unten ab. Sie erhalten zwei Punkte im unteren Diagramm, denen ein bestimmtes Produktionsniveau Y1 (bzw. Y2) und ein bestimmter Zins i1 (bzw. i2) zugeordnet sind.
- Zeichnen Sie nun eine Kurve durch die beiden Punkte und schon haben Sie die IS-Kurve abgetragen.
- Die IS-Kurve verläuft fallend, da für einen niedrigeren Zinssatz i ein höheres Produktionsniveau Y (durch Zunahme der Investitionen) erreicht wird.
- Mathematisch können Sie die IS-Kurve durch i = (c0+b0+G-c1T)/b2-y*(1-c1-b1)/b2 angeben. Hierbei gilt: c0 = autonomer Konsum, c1 = marginale Konsumquote, b0 = autonome Investitionen, b1 = Einkommensreagibilität (der Investitionen), b2 = Zinsreagibilität (der Investitionen).
Herleitung der LM-Kurve
- Im nächsten Schritt leiten Sie die LM-Kurve her. Diese Kurve beschreibt den geometrischen Ort aller Kombinationen von Zins i und Realeinkommen y, die einen Ausgleich auf dem Geldmarkt bewirken.
- Im Gleichgewicht ist das reale Geldangebot gerade der realen Geldnachfrage und es gilt M/P = L(Y, i).
- Die LM-Kurve können Sie ebenfalls relativ einfach mithilfe von zwei Diagrammen herleiten. Diese zeichnen Sie nun auf gleicher Höhe nebeneinander. Diagramm 1 hat die Beschriftungen für die x-Achse: L, M/P und für die y-Achse: i. Diagramm 2 die Beschriftungen für die x-Achse: Y und für die y-Achse: i.
- Das reale Geldangebot ist fix durch die Zentralbank festgelegt und kann durch einen senkrechten Strich im ersten Diagramm dargestellt werden.
- Zur LM-Kurve gelangen Sie nun durch folgende Überlegung: Wenn Y steigt, dann verlangen die Haushalte mehr Geld, um damit mehr Transaktionen durchführen zu können. Da aber das reale Geldangebot fix ist, versuchen die Individuen, ihre Wertpapiere zu verkaufen, um an zusätzliches Geld zu gelangen. Dadurch steigt das Wertpapier-Angebot, die Kurse der Papiere fallen dadurch. Dies lässt wiederum die Zinsen steigen. Daher verläuft die LM-Kurve im (i, Y)-Diagramm steigend.
Auswirkungen von expansiver Fiskalpolitik auf das Produktionsniveau
- Im Schnittpunkt von IS-Kurve und LM-Kurve liegt also ein Gleichgewicht auf dem Güter-, dem Kapital- und dem Geldmarkt vor. Nun können Sie überprüfen, wie sich die gesamtwirtschaftliche Produktion ändert, wenn bestimmte Fälle eintreten. Beispielsweise könnte der Staat seine Ausgaben erhöhen.
- Im IS-LM-Modell verschiebt sich durch Erhöhung der Staatsausgaben die IS-Kurve nach rechts. Da die LM-Kurve davon nicht betroffen ist und gleich bleibt, ergibt sich ein neuer Schnittpunkt der beiden Kurven IS' und LM bei einem höheren Produktions- und Zinsniveau.
- Dabei tritt der sogenannte Crowding-Out-Effekt auf: Durch Anstieg der Zinsen gehen die Investitionen zurück und dadurch wird der Produktionsanstieg wiederum abgeschwächt (Multiplikatoreffekt wird durch Zinsanstieg abgeschwächt).
- Ähnlich könnten Sie nun überprüfen, wie sich die Kurven im IS-LM-Modell verschieben und wie sich dadurch das Produktionsniveau in der kurzen Frist ändert, wenn beispielsweise eine restrikte Fiskal- oder Geldpolitik oder eine expansive Geldpolitik angestrebt wird.
Zusammenwirken von Fiskal- und Geldpolitik
- In der Krise könnte es beispielsweise sein, dass die Exportnachfrage durch verloren gegangenes Vertrauen aus dem Ausland einbricht. Die IS-Kurve verschiebt sich nach links. Im neuen Gleichgewicht sind die Zinsen und die Produktion niedriger.
- Der Staat könnte diesem negativen Effekt entgegenwirken, indem er die Ausgaben erhöht. Dadurch würde sich die IS-Kurve wieder nach rechts bewegen.
- Es könnte aber auch die Zahlbank die Zinsen weiter senken. Dadurch würde sich die LM-Kurve nach rechts verschieben und ein höheres Produktionsniveau bei geringeren Zinsen könnte erreicht werden.
Sie sehen, kurzfristige Auswirkungen von Geld- und Fiskalpolitik lassen sich im IS-LM-Modell vereinfacht veranschaulichen. Im Buch "Makroökonomie" von Blanchard/Illing wird das Modell sehr anschaulich hergeleitet und verschiedene Auswirkungen auf die Kurven und das Gleichgewicht untersucht.
Weiterlesen:
Wie hilfreich finden Sie diesen Artikel?