Was Sie benötigen
- Messreihe bzw. -werte
- Stift
- Papier
Arithmetisches Mittel berechnen - so geht's
Mit dem arithmetischen Mittel berechnen Sie den Durchschnittswert einer bestimmten Anzahl vorliegender Messwerte. Beispielsweise könnte es sich bei den zu betrachtenden Werten um Messwerte bei der Durchführung eines Experiments in der Physik oder Gewinne aus verschiedenen Unternehmenssparten in der Betriebswirtschaft handeln. Auch die absolute Häufigkeit wird Ihnen bereits in der ersten Statistikstunde begegnen.
- Um ein arithmetisches Mittel auszurechnen, addieren Sie zunächst alle Werte der Messreihe zusammen und dividieren diese im Anschluss durch die Anzahl der Werte. Angenommen, Sie haben die Werte x1, x2, ... , xn gegeben, dann können Sie das arithmetische Mittel einfach durch xaM = (x1+x2+...+xn)/n berechnen.
- Beispiel: Sie möchten das durchschnittliche Alter von vier Arbeitskollegen berechnen. Diese sind 32, 34, 33 und 37 Jahre alt. Mit obiger Formel ergibt sich xaM = (32+34+33+37)/4 = 136/4 = 34, d. h. Ihre Arbeitskollegen sind im Mittel 34 Jahre alt.
- In manchen Situationen hilft Ihnen das arithmetische Mittel nicht sehr viel weiter. Wenn in einer Messreihe beispielsweise ein Wert sehr stark von allen anderen abweicht (z. B. Arbeitskollege 4 ist 67 Jahre alt und nicht 37), sodass das arithmetische Mittel dadurch ebenfalls stark beeinflusst wird, so liefert Ihnen der Median eine weitaus bessere Antwort auf Ihre Fragestellung (z. B. 50 % der Personen sind mindestens x Jahre alt).
Die absolute Häufigkeit bestimmen
- Die absolute Häufigkeit könnte Sie beispielsweise bei einem Würfelexperiment interessieren. Angenommen, Sie werfen einen fairen Würfel 100-mal, dann fragen Sie sich bestimmt, wie oft jede Augenzahl jeweils geworfen wurde.
- Führen Sie eine Strichliste und machen nach jedem Wurf einen Strich bei der jeweiligen Augenzahl, dann entspricht die absolute Häufigkeit gerade der Anzahl der Striche am Ende des Experiments. So könnten sich bei 100 Würfen z. B. die absoluten Häufigkeiten 21 für Augenzahl 1, 16 für 2, 13 für 3, 19 für 4, 10 für 5 und 21 für 6 ergeben.
- Ob arithmetisches Mittel, Median, bestimmte Quantile oder völlig andere Kenngrößen - fragen Sie sich immer, welcher Wert Ihnen bei Ihrer Fragestellung weiterhelfen kann und welche Schlussfolgerungen Sie mithilfe des Werts ziehen können.
Sie sehen, einfache statistische Kenngrößen finden Sie in vielen Aufgabenstellungen vor. Daher lohnt es sich auf jeden Fall, diese sicher und zügig bestimmen zu können.
Weiterlesen:
Wie hilfreich finden Sie diesen Artikel?